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Parametric nonfeedback resonance in period doubling systems
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Slow periodic modulation of a control parameter in a period doubling system leads to an interaction between
stable and unstable periodic orbits. This causes a resonance in the system response at the modulation fre-
quency. The conditions for this resonance are studied through numerical simulations of quadratic map and laser
equations. The results are confirmed by experiments in a CO2 laser with modulated losses.
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PACS number~s!: 05.45.2a, 42.55.Lt, 42.65.Sf
n
ic
t

ad
ac

te

s

e
m
in
on
e

ha
n
lly
sy
te
fu
bl
in
d
re
f t
nd
ed

dy
d
ly
ta

ste
du
ft
a

to
the
fer-
jec-
e to

odu-
tric
e
di-
o-
a

the
sys-
ns.
its

the
ers.
nts

tric
e
table
est
a

ork
m-
f
e of
nal
e a
tes
of
stud-
of a
e of
n our
etric
ribed

r a
yze
I. INTRODUCTION

The existence of nonlinear resonances with exter
forces is one of the characteristic properties of a dynam
system. Close to resonance the system is most sensitive
parameter change, and even a small perturbation can le
strong qualitative changes in the structure of phase sp
Therefore, the problem of finding nonlinear resonances
very important in nonlinear dynamics and is closely rela
to the problem of optimal control of dynamical systems@1#.

Among the modern methods for controlling dynamic
nonfeedback methods are being developed intensively@2# for
nonautonomous systems as a counterpart to feedback m
ods@3#. It is common for the former methods to add para
eter perturbations at a frequency resonant with a driv
force @4#. Recently, a new approach to the nonfeedback c
trol has been applied. It has been shown that unstable p
odic orbits~UPOs! can be stabilized by alow-frequency~LF!
modulation of a control parameter@5–7#. The term ‘‘low’’
means that the control frequency is much lower than a c
acteristic frequency of the system, for instance, the freque
of relaxation oscillations. However, the LF can drastica
change dynamics of phase trajectories of a dissipative
tem. This is particularly remarkable when the parame
modulation forces the system to cross back and forth a bi
cation point. This periodic modulation can track an unsta
periodic orbit into a parameter range where the orbit is
herently unstable@5,6#. More recently, it has been discovere
that the LF control modulation at certain amplitudes and f
quencies can stabilize UPOs even when the amplitude o
control is not large enough to cross static bifurcation bou
aries @7#. However, such a stabilization effect is achiev
only in a system where two independent parameters~for ex-
ample, losses and the gain factor in a laser! are modulated
with incommensurate frequencies. In this work we will stu
how stability properties of a dynamical system change un
the influence of the small-amplitude LF modulation, if on
one parameter is modulated, so that UPOs cannot be s
lized.

A related problem was recently considered by Schu
et al. @8# in a chaotic system with feedback parameter mo
lation. The feedback parameter modulation causes a dri
the system trajectory in phase space towards a UPO
PRE 591063-651X/99/59~2!/1669~6!/$15.00
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back, leading to a resonant interaction with a UPO close
the actual system trajectory. They have shown that if
parameter change is chosen to be proportional to the dif
ence between any point on the attractor and the actual tra
tory, the system resonates with the most stable UPOs clos
this point. We suppose that a nonfeedback parameter m
lation should cause a similar effect. Since the parame
feedbackresonance exists, the following question, which w
address in this paper, naturally arises: Under which con
tions does anonfeedbackparameter modulation cause a res
nance in the system response, even if it is not initially in
chaotic state?

In this work we study conditions for the appearance of
LF parametric nonfeedback resonance in period doubled
tems modeled by a quadratic map and differential equatio
We investigate how the location of this resonance and
amplitude depend on the frequency and amplitude of
control modulation as well as on other system paramet
The numerical results are compared then with experime
on a loss-modulated CO2 laser in which an additional slow
loss modulation is introduced. We show that the parame
nonfeedback resonance, much as the feedback resonanc@8#,
appears as a consequence of an interaction between s
and unstable periodic orbits that leads to growing the larg
~negative! Lyapunov exponent in a system operating in
period doubling range.

The parametric resonance to be studied in this w
should be distinguished from such a well-known pheno
enon as the stochastic resonance@9# that was a subject o
extensive investigations during recent years. The essenc
the latter phenomenon is that a weak LF periodic sig
which is undetectable in the absence of noise can forc
bistable system to switch periodically between its two sta
in the presence of an optimal noise. A common point
stochastic resonance and the parametric resonance to be
ied in this work is that both resonances occur as a result
superposition of two system states. However, in the cas
stochastic resonance, both states are stable, whereas i
case one of the states is unstable. Moreover, the param
resonance can appear even in a monostable system desc
by the simplest iterative map without any noise.

The paper is organized as follows. First, we conside
parametrically modulated quadratic map, then we anal
1669 ©1999 The American Physical Society
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laser equations with a modulated parameter, and fina
weprovide experimental evidence of the nonlinear param
ric resonance in a loss-driven CO2 laser.

II. QUADRATIC MAP

Consider, first, the simplest iterative map, namely,
quadratic map@10#

xn11512mxn
2 , ~1!

wherem is a control parameter. This dynamical system h
been studied extensively in recent years@11#. The quadratic
map is known to exhibit a period doubling route to cha
For studying the influence of a slow parameter modulati
we introduce into Eq.~1! a periodic modulation of the con
trol parameter in the form

m5m01a sin~2p f n!, ~2!

wherea and f are the modulation amplitude and frequenc
m0 is the initial control parameter without modulation, andn
is the number of the iteration or time. The additive te
a sin(2pfn) in Eq. ~2! provides a LF (f !1) modulation of
the system response. Figure 1~a! shows the bifurcation dia
gram of Eq.~1! ~without the modulation, i.e.,a50) via the
normalized bifurcation parameterm085m0 /m t , where m t

50.76 is the threshold value of the control parameter
which the first period doubling bifurcation appears.

FIG. 1. ~a! Bifurcation diagram of the quadratic map Eq.~1!
without parameter modulation.~b! Parametric resonances at th
low-frequency spectral component when the modulation is app
with the amplitudea50.1 and the frequencies~1! f 50.01 ~solid
line!, ~2! 0.05 ~dashed line!, and~3! 0.1 ~dotted line!.
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We study the system response by measuring the am
tudeS of the f component in the Fourier spectrum ofxn(n)
averaged over at least 10 periods of the LF at each fi
parameterm0 . Figure 1~b! displays the normalized spectra
amplitude A5S/S0 ~where S0 is the amplitude of the
f-spectral component atm050) versus m08 for different
modulation frequencies. One can see that with increasingm08
from zero to the first period doubling bifurcation, thef com-
ponent is suppressed, while above the period doub
threshold there exists a wide resonance for different mo
lation frequencies in the range ofm08 correspondent to the
period-2 regime. A narrow resonance is also seen in the c
otic range for very small modulation frequency. For instan
at f 50.01 we observe an amplification of the LF signal (A
.1) in the chaotic range. With an increase off, the paramet-
ric resonances reduce and broaden.

The origin of the LF resonances can be found by study
stability properties of the system under the parameter mo
lation. The stability of a system can be characterized by
largest Lyapunov exponentl @12#. Figure 2~b! shows the
behavior ofl versusm08 in the presence~solid line! and in
the absence~dotted line! of the modulation witha50.1 and
f 50.1. The corresponding signal responseA is shown for
reference in Fig. 2~a!. The location and amplitude of th
resonance,m r and Ar , are indicated in the figure. One ca
see that in the period-2 range,l displays quite different be-
havior when the modulation is applied. The resonance inl
correlates with the resonance inA. Moreover, the location of
the resonance inA coincides with the minimum inl without
the modulation. This means that the parameter modula

d

FIG. 2. ~a! Normalized spectral amplitudeA at f 50.1 versus
normalized bifurcation parameterm08 in quadratic map Eq.~1! for
a51. ~b! Largest Lyapunov exponents in the presence~solid line!
and in the absence~dotted line! of modulation. The locationm r and
the magnitudeAr of the resonance are indicated by the dashed lin
The positions of the first and second period doubling threshold
the absence of the control modulation are shown by the vert
dotted lines. In the vicinity of the resonance, the period-2 or
becomes more unstable becausel approaches zero.
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acts to ‘‘destabilize’’ the system operating in the period
regime. The system with the LF modulation becomes m
unstable in the parameter range where it is most stable w
out the modulation. This indicates a strong interaction
tween stable and unstable periodic orbits. We find that
efficiency of this interaction depends on the amplitude a
frequency of the modulation as well as on the bifurcat
parameter.

Figure 3~a! shows the dependences ofm r on the modula-
tion frequency for different amplitudesa. One can see tha
at very slow~adiabatic! modulation of the control paramete
the resonance is located at a distance ofa from the first
period doubling threshold, i.e.,m r511a. Thus, to obtain
the resonance at very low modulation frequency, the con
parameter should be changed with an amplitude equal to
difference between the actual trajectory of the period-2 o
and the stable period-1 orbit. Only at a relatively high mod
lation amplitude ism r,11a @curve~4! in Fig. 3~a!#. In this
case, the control signal cannot be considered to be sm
With an increase off, the actual trajectory deforms more an
more and the position of the resonance shifts beyond f
the period doubling threshold,m r.11a, and at f
'0.08, m r becomes independent ofa.

The dependence of the resonance amplitudeAr on the
modulation frequencyf is shown in Fig. 3~b! for different
modulation amplitudes. One can see thatAr is higher when

FIG. 3. ~a! Location of the resonancem r and ~b! resonance
amplitudeAr versus modulation frequency for quadratic map E
~1! with modulation amplitudes~1! a50.01, ~2! 0.1, ~3! 0.2, and
~4! 0.3. At very slow modulation the system adiabatically a
proaches the UPO and the resonance appears at the distancea
from the bifurcation point.
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the signal is smaller, but with approachingf to 0.1,Ar does
not depend ona, andAr→0.5.

III. LASER EQUATIONS

Now consider a period doubling system described b
system of differential equations, for example, the sim
rate-equation model of a class-B laser@13,14#,

du

dt
5t21~y2k02k!u, ~3!

dy

dt
5~y02y!g2uy. ~4!

Hereu is proportional to the radiation density,y andy0 are
the gain and the unsaturated gain in the active medium,
spectively,t is half round-trip time of light in the resonator
g is the gain decay rate, andk0 is the constant part of the
losses. The variable cavity lossesk are modulated with two
incommensurate frequencies so that

k5kd cos~2p f dt !1kc cos~2p f ct !, ~5!

where f d ,kd , and f c , kc are the frequencies and ampl
tudes of the driving and control signals, respectively. T
termkc cos(2pfct) in Eq. ~5! provides a slow (f c! f d), small
(kc!kd) modulation of the laser intensity. The followin
fixed parameters, appropriate for the experimental sys
described below, are used throughout our calculationst
53.531029 s,g52.53105 s21, y050.175, k050.173,
f d5105 s21, f c5104 s21, while the parameterskd and
kc are varied in the numerical simulations.

The bifurcation diagram of stroboscopically measuredu
~at each periodT51/f d) shown in Fig. 4~a! displays the
period doubling behavior with the bifurcation parameterkd
for the system of Eqs.~3! and~4! without the control modu-
lation, i.e., whenkc50. The influence of the slow paramete
modulation is studied by measuring the amplitudeSof the f c
component from the Fourier spectrum of the laser intensit
each fixed bifurcation parameterkd . In Fig. 4~b! we plot the
normalized spectral amplitudeA5S/S0 ~whereS0 is the am-
plitude of thef c-spectral component without the driving, i.e
at kd50) versus the driving amplitudekd for two different
control amplitudes,kc51024 ~dots! andkc51025 ~crosses!.
One can see that for the control frequency used in our si
lations (f c50.1f d) both the location and amplitude of th
resonance do not depend onkc . This agrees with the result
obtained for the quadratic map~see Fig. 3 forf 50.1).

Notice that the value ofA can be considered as a factor
amplification of the control signal by the laser as a nonlin
dynamical system. As can be seen from Fig. 4~b!, the laser
begins to amplify the LF signal (A.1) just after the first
period doubling threshold, andA has a wide resonance wit
the maximum atkd

r 53.7. With a further increase inkd , the
laser response decreases and the control signal is suppr
by the system, i.e.,A,1.

Analogous to the case of the quadratic map, we study
stability of the system under the LF modulation by calcul
ing the largest Lyapunov exponentsl ~the algorithm is due

.

-
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to Wolf et al. @12#!. Figure 4~c! shows the dependences ofl
on the driving amplitude in the presence~closed dots! and in
the absence~open dots! of the LF modulation. One can se
that the control modulation leads to ‘‘destabilization’’ of th
period-2 regime approachingl to zero. This is the reason fo
the resonance in the amplification factorA. By comparing-
Figs. 4~b! and 4~c! with Figs. 2~a! and 2~b!, one can observe
a close similarity in the resonant behavior ofA andl in the
period doubling range for the driven laser Eqs.~3! and ~4!
and the parametrically modulated quadratic map Eq.~1!.

Figure 5 displays the dependences of the amplificatioA
on the control amplitudekc in the vicinity of the resonance
shown in Fig. 4~b! for different driving amplitudes. One ca

FIG. 4. ~a! Bifurcation diagram of the laser Eqs.~3! and~4! with
the driving amplitudekd as a bifurcation parameter~without the
control modulation,kc50). ~b! Amplification factorA at the con-
trol frequencyf c versus the driving amplitudekd for two different
amplitudes of the controlkc51024 ~dots! and 1025 ~crosses!. Non-
linear resonances are seen in the period-2 and period-4 range~c!
Largest Lyapunov exponents at the absence~open dots! and at the
presence~closed dots! of the control modulation withkc51024.
The slow small modulation destabilizes the system in the perio
and period-4 ranges.
see that the character of the curves changes depending okd

with respect to the resonance. Whenkd,kd
r , the amplifica-

tion decreases with the control amplitudekc @curve ~2!# and
vice versa@curve ~3!#. Only for the driving amplitude very
near tokd

r does the amplification factor almost not depend
kc @curve ~1!#.

IV. EXPERIMENT

In order to check the validity of the method experime
tally, we choose a single-mode CO2 laser with modulated
losses via an acousto-optic modulator. The experime
setup is similar to that described in previous works@6,7#. The
electric signalV5Vd cos(2pfdt)1Vc cos(2pfct) is applied to
the modulator providing time-dependent cavity losses. H
Vd and Vc are the driving and control amplitudes, respe
tively, f d5110 kHz andf c512 kHz. The output laser in-
tensity is detected with a CdxHg12xTe detector and dis-
played on a Digital Signal Analyzer~Tektronix DSA 602A!
that performs the power Fourier transform of the signal.

Figure 6 illustrates the influence of the slow contr
modulation atf c on the Fourier transform spectra of the las
intensity for three different driving amplitudes corresponde
to period-1 @Fig. 6~a!#, period-2 @Fig. 6~b!#, and period-4
@Fig. 6~c!# regimes. The spectra shown in the figure are
averaged spectra over 128 measurements. The slow pa
eter modulation leads also to the appearance of differe
frequencies f d1 f c and f d2 f c . One can see that th
f c-spectral component is higher when the laser operate
the period-2 regime@Fig. 6~b!#.

In Fig. 7~a! we plot the signal-to-noise ratio~SNR! at the
control frequencyf c versus the driving voltageVd . The
boundaries of the period doubling and chaotic regimes~in
the absence of the control modulation! are schematically in-
dicated in the figure by the dotted lines. One can see
SNR has a resonance situated approximately at the mi
part of the period-2 range. It should be noted that the con
signal added to the system is relatively small as compa
with the driving signal. For instance, atVd51 V and Vc
510 V the laser response atf c is 100 times smaller than
that at f d . This unbalance between input and output sign

-2

FIG. 5. ~a! Amplification factorA versus the control amplitude
kc for driving amplitudes~1! kd53.7, ~2! 3.6, and~3! 3.9.
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appears because the modulator has a strong acoustic
nance at 110 kHz, while at 12 kHz the modulator is wea
efficient.

The experimental amplification factorAe versus the con-
trol amplitude at two different fixed values of the drivin
amplitude is shown in Fig. 7~b!. HereAe is defined as SNR
normalized to that atVd50. One can see that closer to th
resonance shown in Fig. 7~a!, the amplification factor has
only a weak dependence on the control amplitude@curve
~2!#.

Thus, the laser operated in a period doubling regime
amplify the slow signal. The origin of this amplification is a
interaction between stable and unstable periodic orbits du
a slow periodic drift of the actual system trajectory induc
by the LF parameter modulation. The comparison of the
perimentally obtained resonance in Fig. 7~a! with the nu-
merical ones shown in Figs. 1~b! and 4~b! displays a good
qualitative agreement. We do not consider here more c
plex models for dynamic description of a CO2 laser~see, for
example,@15# or @7#! that probably can provide not onl
qualitative but also reasonable quantitative agreement
experiments. However, the coincidence of the results

FIG. 6. Averaged experimental Fourier transform spectra of
laser intensity with the control modulation atf c for different driving
amplitudes~a! Vd51.5 V ~period 1!, ~b! 3 V ~period 2!, and~c! 6
V ~period 4!. f d5110 kHz, f c512 kHz, Vc54 V. The
maximum in thef c-spectral component is observed in the period
regime.
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tained in the simplest systems and in the experiments
good reason to believe that the low-frequency parame
resonance is a general phenomenon.

V. CONCLUSIONS

In conclusion, we have shown numerically with par
metrically modulated quadratic map and laser equations,
experimentally in a loss-driven CO2 laser, that a low-
frequency parameter modulation in the period doubl
range leads to a resonance in the system response at th
frequency. The physical mechanism underlying this effec
very similar to that in the case of the feedback parame
modulation@8#. The low frequency causes a drift of the sy
tem trajectory in phase space towards an unstable peri
orbit and back, leading, at certain parameters, to the reso
interaction with an unstable periodic orbit close to the act
system trajectory. As distinct from the chaotic system,
low frequency in a period doubled system ‘‘decreases’’
stability of the system in the sense that the largest~negative!
Lyapunov exponent grows and approaches zero at the r
nance.

We have shown how the position and amplitude of t
resonance depend on the amplitude and frequency of the
rameter modulation. The occurrence of the low-frequen
parametric resonance in different dynamical systems, e
cially in such a simple system as a quadratic map, induce
to believe that this is a general phenomenon and hence c

e

FIG. 7. ~a! Experimental signal-to-noise ratio at the signal fr
quency taken from the averaged power spectra versus the dr
amplitude. The vertical lines show the boundaries between dyna
regimes in the absence of the control modulation.~b! Experimental
amplification factor versus the control amplitude at two differe
driving amplitudes~1! Vd52.5 V and~2! 3 V.
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be also observed in other nonlinear systems. Although
did not discover a signal amplification in the quadratic m
(Ar,1), the existence of amplification in the vicinity of th
resonance derived from the laser equations and in exp
ments can be of interest for communications with the use
a period doubled system as a low-frequency signal ampli
,
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