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Parametric nonfeedback resonance in period doubling systems
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Slow periodic modulation of a control parameter in a period doubling system leads to an interaction between
stable and unstable periodic orbits. This causes a resonance in the system response at the modulation fre-
guency. The conditions for this resonance are studied through numerical simulations of quadratic map and laser
equations. The results are confirmed by experiments in al@&r with modulated losses.
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I. INTRODUCTION back, leading to a resonant interaction with a UPO close to
the actual system trajectory. They have shown that if the
The existence of nonlinear resonances with externaparameter change is chosen to be proportional to the differ-
forces is one of the characteristic properties of a dynamicaénce between any point on the attractor and the actual trajec-
system. Close to resonance the system is most sensitive tat@y, the system resonates with the most stable UPOs close to
parameter change, and even a small perturbation can lead ttais point. We suppose that a nonfeedback parameter modu-
strong qualitative changes in the structure of phase spac&tion should cause a similar effect. Since the parametric
Therefore, the problem of finding nonlinear resonances ifeedbackesonance exists, the following question, which we
very important in nonlinear dynamics and is closely relatedaddress in this paper, naturally arises: Under which condi-
to the problem of optimal control of dynamical systefi$  tions does aonfeedbaclarameter modulation cause a reso-
Among the modern methods for controlling dynamics,nance in the system response, even if it is not initially in a
nonfeedback methods are being developed intensj2glipr ~ chaotic state?
nonautonomous systems as a counterpart to feedback meth-In this work we study conditions for the appearance of the
ods[3]. It is common for the former methods to add param-LF parametric nonfeedback resonance in period doubled sys-
eter perturbations at a frequency resonant with a drivingems modeled by a quadratic map and differential equations.
force[4]. Recently, a new approach to the nonfeedback conWe investigate how the location of this resonance and its
trol has been applied. It has been shown that unstable pe@mplitude depend on the frequency and amplitude of the
odic orbits(UPOS can be stabilized by mw-frequencyLF)  control modulation as well as on other system parameters.
modulation of a control parametgs—7]. The term “low” The numerical results are compared then with experiments
means that the control frequency is much lower than a chamn a loss-modulated CQaser in which an additional slow
acteristic frequency of the system, for instance, the frequenclpss modulation is introduced. We show that the parametric
of relaxation oscillations. However, the LF can drasticallynonfeedback resonance, much as the feedback resor@nce
change dynamics of phase trajectories of a dissipative sysppears as a consequence of an interaction between stable
tem. This is particularly remarkable when the parameteand unstable periodic orbits that leads to growing the largest
modulation forces the system to cross back and forth a bifurénegativeé Lyapunov exponent in a system operating in a
cation point. This periodic modulation can track an unstableperiod doubling range.
periodic orbit into a parameter range where the orbit is in- The parametric resonance to be studied in this work
herently unstabl€5s,6]. More recently, it has been discovered should be distinguished from such a well-known phenom-
that the LF control modulation at certain amplitudes and freenon as the stochastic resonaf8é that was a subject of
guencies can stabilize UPOs even when the amplitude of thextensive investigations during recent years. The essence of
control is not large enough to cross static bifurcation boundthe latter phenomenon is that a weak LF periodic signal
aries[7]. However, such a stabilization effect is achievedwhich is undetectable in the absence of noise can force a
only in a system where two independent paramefiersex-  bistable system to switch periodically between its two states
ample, losses and the gain factor in a lasee modulated in the presence of an optimal noise. A common point of
with incommensurate frequencies. In this work we will study stochastic resonance and the parametric resonance to be stud-
how stability properties of a dynamical system change undeied in this work is that both resonances occur as a result of a
the influence of the small-amplitude LF modulation, if only superposition of two system states. However, in the case of
one parameter is modulated, so that UPOs cannot be stalstochastic resonance, both states are stable, whereas in our
lized. case one of the states is unstable. Moreover, the parametric
A related problem was recently considered by Schusteresonance can appear even in a monostable system described
et al.[8] in a chaotic system with feedback parameter moduby the simplest iterative map without any noise.
lation. The feedback parameter modulation causes a drift of The paper is organized as follows. First, we consider a
the system trajectory in phase space towards a UPO armhrametrically modulated quadratic map, then we analyze

1063-651X/99/562)/16696)/$15.00 PRE 59 1669 ©1999 The American Physical Society



1670 A. N. PISARCHIK AND R. CORBALAN PRE 59

(a) period 1 period 2

04 0.6 0.8 1.0 , 1.2 1.4 1.6

0 ' 1 ‘ 2 FIG. 2. (a) Normalized spectral amplituda at f=0.1 versus
w normalized bifurcation parametegr; in quadratic map Eq(l) for
0 a=1. (b) Largest Lyapunov exponents in the prese(smid line)
FIG. 1. (a) Bifurcation diagram of the quadratic map Ed. and in the_ absenadglotted ling of modu!atipn. The locatiofp, and_
without parameter modulatior(b) Parametric resonances at the the magnitudé\, of the resonance are indicated by the dashed lines.

low-frequency spectral component when the modulation is applied N® Positions of the first and second period doubling thresholds in
with the amplitudea=0.1 and the frequencied) f=0.01 (solid the absence of the control modulation are shown by the vertical

line), (2) 0.05 (dashed ling and(3) 0.1 (dotted line. dotted lines. In the vicinity of the resonance, the period-2 orbit
becomes more unstable becawsapproaches zero.

laser equations with a modulated parameter, and finally, \ye study the system response by measuring the ampli-
vyeprovide exp_erimental e_vidence of the nonlinear paramety,qe S of the f component in the Fourier spectrum xf(n)
ric resonance in a loss-driven G@ser. averaged over at least 10 periods of the LF at each fixed
parametenu,. Figure Xb) displays the normalized spectral
Il. QUADRATIC MAP amplitude A=S/S, (where Sy is the amplitude of the
: ' . . . f-spectral component af;=0) versus ug for different
quz(a:o(l)rrz:if?rr]’mg;s()t], the simplest iterative map, namely, themodulation frequgncies. .One can see t_hat wif[h increasing
from zero to the first period doubling bifurcation, theom-
ponent is suppressed, while above the period doubling
Xn+1=1—MXﬁ, (1)  threshold there exists a wide resonance for different modu-
lation frequencies in the range @f| correspondent to the

where u is a control parameter. This dynamical system hag€riod-2 regime. A narrow resonance is also seen in the cha-

been studied extensively in recent yeft4]. The quadratic ~ Otic range for very small modulation frequency. For instance,

map is known to exhibit a period doubling route to chaosat f=0.01 we observe an amplification of the LF signal (

For studying the influence of a slow parameter modulation;>1) in the chaotic range. With an increasef,ahe paramet-

we introduce into Eq(1) a periodic modulation of the con- Tic resonances reduce and broaden. .

trol parameter in the form The origin of the LF resonances can be found by studying
stability properties of the system under the parameter modu-
lation. The stability of a system can be characterized by the

m=pot asin(2mzfn), (2)  largest Lyapunov exponent [12]. Figure Zb) shows the

behavior of\ versusug in the presencésolid line) and in

wherea andf are the modulation amplitude and frequency, the absencédotted ling of the modulation withe=0.1 and

Mo is the initial control parameter without modulation, and f=0.1. The corresponding signal resporsés shown for

is the number of the iteration or time. The additive termreference in Fig. @). The location and amplitude of the

a sin(27fn) in Eq. (2) provides a LF {<1) modulation of  resonanceu, andA,, are indicated in the figure. One can

the system response. Figuréjlshows the bifurcation dia- see that in the period-2 range,displays quite different be-

gram of Eq.(1) (without the modulation, i.eq=0) via the  havior when the modulation is applied. The resonanck in

normalized bifurcation parameteny=puo/my, Where u;  correlates with the resonanceAn Moreover, the location of

=0.76 is the threshold value of the control parameter athe resonance iA coincides with the minimum in without

which the first period doubling bifurcation appears. the modulation. This means that the parameter modulation
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FIG. 3. (@) Location of the resonancg, and (b) resonance
amplitudeA, versus modulation frequency for quadratic map Eq.
(1) with modulation amplitude$l) «=0.01,(2) 0.1, (3) 0.2, and
(4) 0.3. At very slow modulation the system adiabatically ap-
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the signal is smaller, but with approachih¢p 0.1, A, does
not depend onv, andA,—0.5.

lll. LASER EQUATIONS

Now consider a period doubling system described by a
system of differential equations, for example, the simple
rate-equation model of a clagslaser[13,14],

du |

T (y—ko—K)u, (©)
dy

m=(yo—y)y—uy- (4)

Hereu is proportional to the radiation density,andy, are

the gain and the unsaturated gain in the active medium, re-
spectively,r is half round-trip time of light in the resonator,

v is the gain decay rate, arlg is the constant part of the
losses. The variable cavity lossksre modulated with two
incommensurate frequencies so that

k=kgycog2mxf4t)+k.cog2wft), 5)
wherefy,ky, andf., k. are the frequencies and ampli-
tudes of the driving and control signals, respectively. The
termk, cos(2rft) in Eq. (5) provides a slow {.<fg), small
(kc<kyq) modulation of the laser intensity. The following
fixed parameters, appropriate for the experimental system

proaches the UPO and the resonance appears at the distance offéScribed below, are used throughout our calculatians:

from the bifurcation point.

=3.5x10"° 5,y=25x10° s!, y,=0.175, ko=0.173,
fq=10° s, f.=10* s, while the parameterk, and
k. are varied in the numerical simulations.

The bifurcation diagram of stroboscopically measuted

acts to “destabilize” the system operating in the period-2(at each periodl =1/f;) shown in Fig. 4a) displays the
regime. The system with the LF modulation becomes mosperiod doubling behavior with the bifurcation paramekgr
unstable in the parameter range where it is most stable witHor the system of Eqg3) and(4) without the control modu-
out the modulation. This indicates a strong interaction belation, i.e., wherk.=0. The influence of the slow parameter
tween stable and unstable periodic orbits. We find that theénodulation is studied by measuring the amplit@ief the f .
efficiency of this interaction depends on the amplitude andomponent from the Fourier spectrum of the laser intensity at
frequency of the modulation as well as on the bifurcationeach fixed bifurcation parametiy. In Fig. 4(b) we plot the

parameter.

Figure 3a) shows the dependences @f on the modula-
tion frequency for different amplitudes. One can see that
at very slow(adiabati¢ modulation of the control parameter,
the resonance is located at a distanceaxofrom the first
period doubling threshold, i.ey,=1+a. Thus, to obtain

normalized spectral amplitude=S/S; (whereS; is the am-
plitude of thef.-spectral component without the driving, i.e.,
at ky=0) versus the driving amplitudiey for two different
control amplitudesk,=10"* (dot9 andk,=10"° (crosses

One can see that for the control frequency used in our simu-
lations (f.=0.1f,) both the location and amplitude of the

the resonance at very low modulation frequency, the controlesonance do not depend kg. This agrees with the results
parameter should be changed with an amplitude equal to thebtained for the quadratic mapee Fig. 3 forf =0.1).

difference between the actual trajectory of the period-2 orbit

Notice that the value oA can be considered as a factor of

and the stable period-1 orbit. Only at a relatively high modu-amplification of the control signal by the laser as a nonlinear

lation amplitude isu, <1+ « [curve(4) in Fig. 3@)]. In this

dynamical system. As can be seen from Fifh)4the laser

case, the control signal cannot be considered to be smalbegins to amplify the LF signalA>1) just after the first

With an increase of, the actual trajectory deforms more and

period doubling threshold, anl has a wide resonance with

more and the position of the resonance shifts beyond fronthe maximum akj=3.7. With a further increase iky, the

the period doubling thresholdu,>1+«, and at f
~0.08, u, becomes independent af

The dependence of the resonance amplitAgdeon the
modulation frequency is shown in Fig. 8) for different

modulation amplitudes. One can see thatis higher when

laser response decreases and the control signal is suppressed
by the system, i.eA<1.

Analogous to the case of the quadratic map, we study the
stability of the system under the LF modulation by calculat-
ing the largest Lyapunov exponerXs(the algorithm is due
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x X see that the character of the curves changes dependikg on
04 5 3 s sxios  With respect to the resonance. Whiep<k;, the amplifica-
kd tion decreases with the control amplitukg[curve (2)] and
vice versa[curve (3)]. Only for the driving amplitude very
ol © near toky does the amplification factor almost not depend on
k. [curve (1)].
Atk IV. EXPERIMENT
<
In order to check the validity of the method experimen-
2l tally, we choose a single-mode GQaser with modulated
losses via an acousto-optic modulator. The experimental
setup is similar to that described in previous wd&g]. The
0 2 6 8x10°%  electric signalV =V cos(2rf i) +V,cos(2rf.t) is applied to

the modulator providing time-dependent cavity losses. Here
V4 and V. are the driving and control amplitudes, respec-
tively, f4=110 kHz andf,=12 kHz. The output laser in-
tensity is detected with a GHg;_,Te detector and dis-
played on a Digital Signal AnalyzdiTektronix DSA 602A

that performs the power Fourier transform of the signal.

Figure 6 illustrates the influence of the slow control

modulation aff . on the Fourier transform spectra of the laser

FIG. 4. (a) Bifurcation diagram of the laser Eg®) and(4) with
the driving amplitudeky as a bifurcation parametdéwithout the
control modulationk.=0). (b) Amplification factorA at the con-
trol frequencyf versus the driving amplitudky for two different
amplitudes of the contrdd,=10"* (dot9 and 10 ° (crosses Non-
linear resonances are seen in the period-2 and period-4 rayes.
Largest Lyapunov exponents at the absefupen dots and at the

presence(closed dots of the control modulation withk,= 102, intensity for three different driving amplitudes correspondent
The slow small modulation destabilizes the system in the period-20 pe”0d'1[F_|g- 6(a)], period-2[Fig. G(b_)]. and period-4
and period-4 ranges. [Fig. 6(c)] regimes. The spectra shown in the figure are the

averaged spectra over 128 measurements. The slow param-
eter modulation leads also to the appearance of difference
frequenciesfy+f. and fy—f.. One can see that the
to Wolf et al.[12]). Figure 4c) shows the dependences)of f.-spectral component is higher when the laser operates in
on the driving amplitude in the presen@osed dotsand in  the period-2 regiméFig. 6(b)].
the absencéopen dots of the LF modulation. One can see  In Fig. 7(a) we plot the signal-to-noise rati®&NR) at the
that the control modulation leads to “destabilization” of the control frequencyf. versus the driving voltagd/y. The
period-2 regime approachingto zero. This is the reason for boundaries of the period doubling and chaotic regirties
the resonance in the amplification factér By comparing- the absence of the control modulatjare schematically in-
Figs. 4b) and 4c) with Figs. 2a) and Zb), one can observe dicated in the figure by the dotted lines. One can see that
a close similarity in the resonant behaviordfind\ in the  SNR has a resonance situated approximately at the middle
period doubling range for the driven laser E(R). and(4)  part of the period-2 range. It should be noted that the control
and the parametrically modulated quadratic map &y. signal added to the system is relatively small as compared
Figure 5 displays the dependences of the amplificafion with the driving signal. For instance, &t;=1 V and V.
on the control amplitudé, in the vicinity of the resonance =10 V the laser response &t is 100 times smaller than
shown in Fig. 4b) for different driving amplitudes. One can that atfy. This unbalance between input and output signals
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FIG. 7. () Experimental signal-to-noise ratio at the signal fre-
quency taken from the averaged power spectra versus the driving
) amplitude. The vertical lines show the boundaries between dynamic
Y 50 100 150 regimes in the absence of the control modulatitm.Experimental
amplification factor versus the control amplitude at two different
driving amplitudeg1) V4=2.5 V and(2) 3 V.

FIG. 6. Averaged experimental Fourier transform spectra of the
laser intensity with the control modulation fatfor different driving
amplitudes(a) V4=1.5 V (period 1, (b) 3 V (period 2, and(c) 6
V (period 4. fy=110 kHz, f.=12 kHz, V,=4 V. The tained in the simplest systems and in the experiments is a
maximum in thef -spectral component is observed in the period-2good reason to believe that the low-frequency parametric
regime. resonance is a general phenomenon.

Frequency (kHz)

V. CONCLUSIONS

appears because the modulator has a strong acoustic reso-In conclusion, we have shown numerically with para-
nance at 110 kHz, while at 12 kHz the modulator is weaklymetrically modulated quadratic map and laser equations, and
efficient. experimentally in a loss-driven GOlaser, that a low-
The experimental amplification factéy, versus the con- frequency parameter modulation in the period doubling
trol amplitude at two different fixed values of the driving range leads to a resonance in the system response at the low
amplitude is shown in Fig.(®). Here A, is defined as SNR frequency. The physical mechanism underlying this effect is
normalized to that a¥y=0. One can see that closer to the very similar to that in the case of the feedback parameter
resonance shown in Fig.(@, the amplification factor has modulation[8]. The low frequency causes a drift of the sys-
only a weak dependence on the control amplitiderve  tem trajectory in phase space towards an unstable periodic
2]. orbit and back, leading, at certain parameters, to the resonant
Thus, the laser operated in a period doubling regime cainteraction with an unstable periodic orbit close to the actual
amplify the slow signal. The origin of this amplification is an system trajectory. As distinct from the chaotic system, the
interaction between stable and unstable periodic orbits due tow frequency in a period doubled system “decreases” the
a slow periodic drift of the actual system trajectory inducedstability of the system in the sense that the largespative
by the LF parameter modulation. The comparison of the extyapunov exponent grows and approaches zero at the reso-
perimentally obtained resonance in Figa7with the nu-  nance.
merical ones shown in Figs(Hd) and 4b) displays a good We have shown how the position and amplitude of the
qualitative agreement. We do not consider here more conresonance depend on the amplitude and frequency of the pa-
plex models for dynamic description of a G@ser(see, for rameter modulation. The occurrence of the low-frequency
example,[15] or [7]) that probably can provide not only parametric resonance in different dynamical systems, espe-
qualitative but also reasonable quantitative agreement withially in such a simple system as a quadratic map, induces us
experiments. However, the coincidence of the results obto believe that this is a general phenomenon and hence could
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